

Mass Effects: a first look

Heather M. Gray

Last week's questions

- Why does the Z' have such a striking pseudorapidity distribution?
- How does the distance between the decay products decrease with increasing mass?

New samples

- Pythia Z' sample with m = 0.7, 1, 1.5 TeV
- McAtNlo ttbar sample
 - generating partons not obvious (couldn't split into parton/gluon samples)
 - has both lepton+jets and dilepton
 - also both positrons and electrons
- Made ntuples with TopView

The mystery deepens

notice how it shifts as mass increases...

(Partial) Solution

- Pseudorapidity ≠ rapidity!
- Only a good approximation in the relativistic limit (m² << p²)</p>

$$\frac{dN}{d\eta dp_T} = \sqrt{1 - \frac{m^2}{m_T^2 \cosh^2 y} \frac{dN}{dy dp_T}}$$

$$m_T^2 = m^2 + p_T^2$$

Next Steps

- Apply "standard" top group cuts to calculate efficiencies for the different samples
- Calculate a (very rough) S/B
- Start learning about reconstruction